A new approach to Richardson extrapolation in the finite element method for second order elliptic problems

نویسندگان

  • Mohammad Asadzadeh
  • Alfred H. Schatz
  • Wolfgang L. Wendland
چکیده

This paper presents a nonstandard local approach to Richardson extrapolation, when it is used to increase the accuracy of the standard finite element approximation of solutions of second order elliptic boundary value problems in RN , N ≥ 2. The main feature of the approach is that it does not rely on a traditional asymptotic error expansion, but rather depends on a more easily proved weaker a priori estimate, derived in [19], called an asymptotic error expansion inequality. In order to use this inequality to verify that the Richardson procedure works at a point, we require a local condition which links the different subspaces used for extrapolation. Roughly speaking, this condition says that the subspaces are similar about a point, i.e., any one of them can be made to locally coincide with another by a simple scaling of the independent variable about that point. Examples of finite element subspaces that occur in practice and satisfy this condition are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence and Extrapolation for Mixed Finite Element Methods on Rectangular Domains

Asymptotic expansions for the RT (Raviart-Thomas) mixed finite element approximation by the lowest-order rectangular element associated with a second-order elliptic equation on a rectangular domain are derived. Superconvergence for the vector field along the Gauss lines is obtained as a result of the expansion. A procedure of postprocessed extrapolation is presented for the scalar field, as wel...

متن کامل

Asymptotic Expansions and Extrapolation of Approximate Eigenvalues for Second Order Elliptic Problems by Mixed Finite Element Methods

In this paper, we derive an asymptotic error expansion for the eigenvalue approximations by the lowest order Raviart-Thomas mixed finite element method for the general second order elliptic eigenvalue problems. Extrapolation based on such an expansion is applied to improve the accuracy of the eigenvalue approximations. Furthermore, we also prove the superclose property between the finite elemen...

متن کامل

A Least Square Extrapolation Method for the A Posteriori Error Estimate of CFD and Heat Transfer Problem

A posteriori error estimators are fundamental tools for providing confidence in the numerical computation of PDEs. To date, the main theories of a posteriori estimators have been developed largely in the finite element framework, for elliptic operators in the absence of disparate length scales. On the other hand, there is a strong interest in using grid refinement combined with Richardson extra...

متن کامل

Extrapolation of the Finite Element Method on General Meshes

In this paper, we consider the extrapolation method for second order elliptic problems on general meshes and derive a type of finite element expansion which is dependent of the triangulation. It allows to prove the effectiveness of the extrapolation on general meshes and also validates the extrapolation method can be applied on the automatically produced meshes of the general computing domains....

متن کامل

A Finite Element Splitting Extrapolation for Second Order Hyperbolic Equations

Splitting extrapolation is an efficient technique for solving large scale scientific and engineering problems in parallel. This article discusses a finite element splitting extrapolation for second order hyperbolic equations with time-dependent coefficients. This method possesses a higher degree of parallelism, less computational complexity, and more flexibility than Richardson extrapolation wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2009